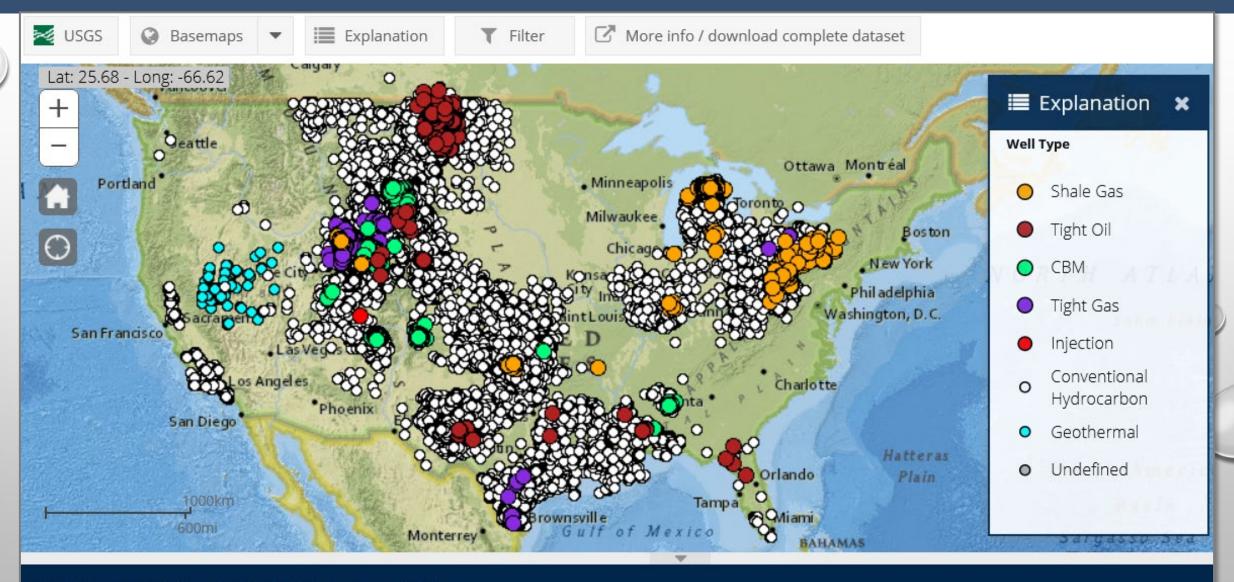
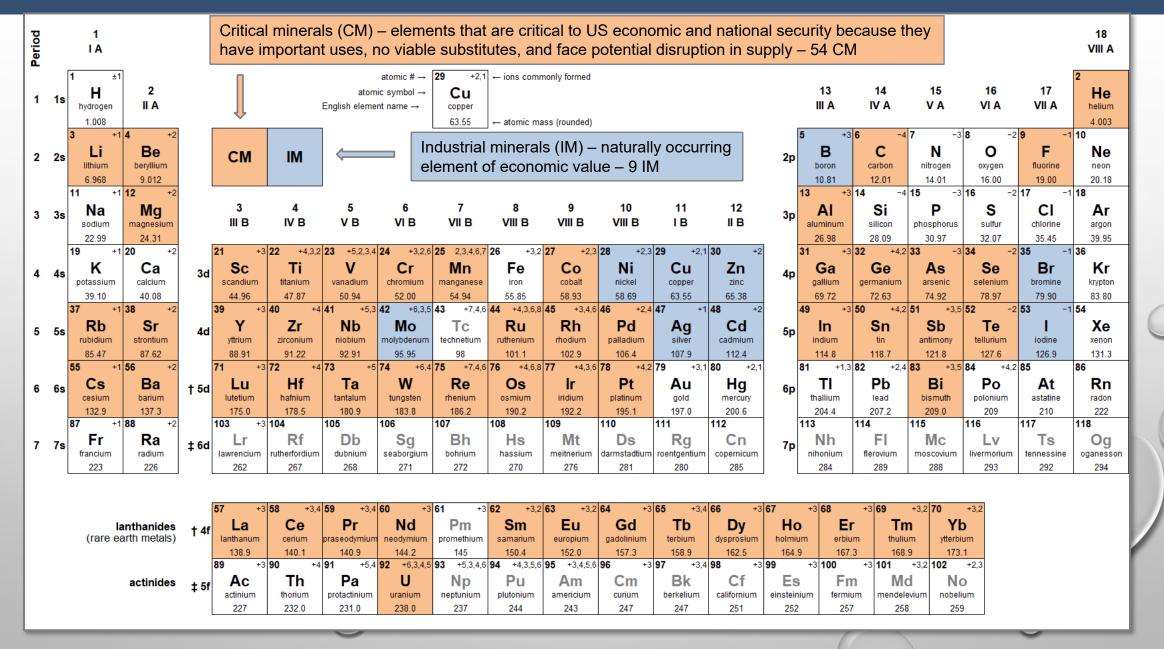
Prospecting for Critical Minerals and Recoverable Elements in southern Midcontinent Brines

Kyle E. Murray, Ph.D.


Hydrogeologist & Geological Engineer

Kyle.Murray@OU.edu

http://kylemurray.oucreate.com/



USGS Produced Waters Geochemical Database

No Filter: 103,784 of 103,910 features visible.

Critical and Industrial Minerals/Elements

Critical and Industrial Minerals/Elements

From USGS National Minerals Information Center

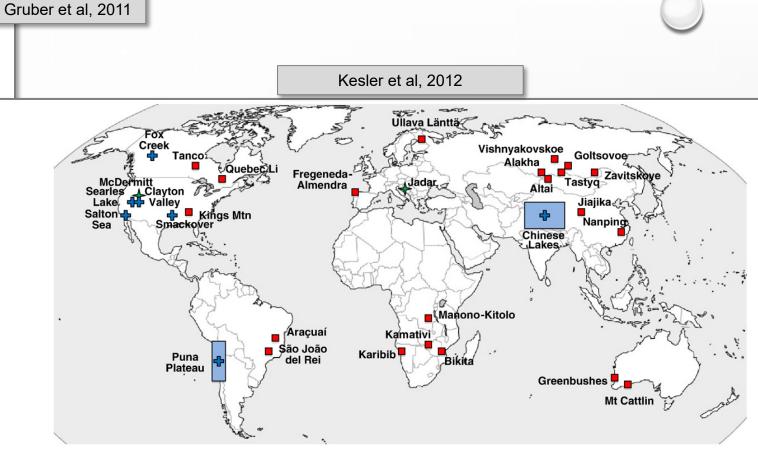
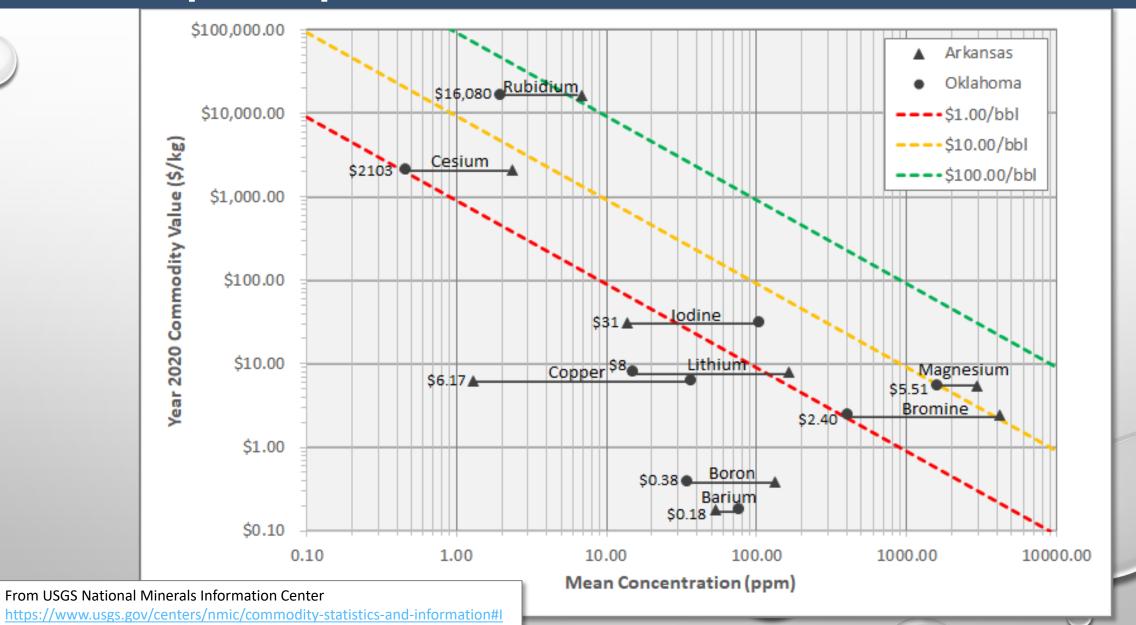
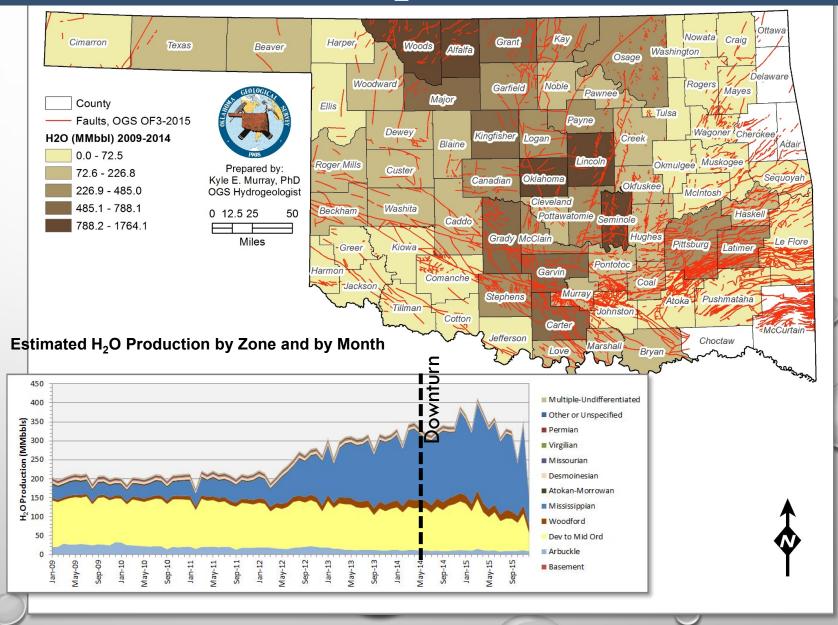

https://www.usgs.gov/centers/nmic/commodity-statistics-and-information#I

Table 2 World in-situ lithium resource

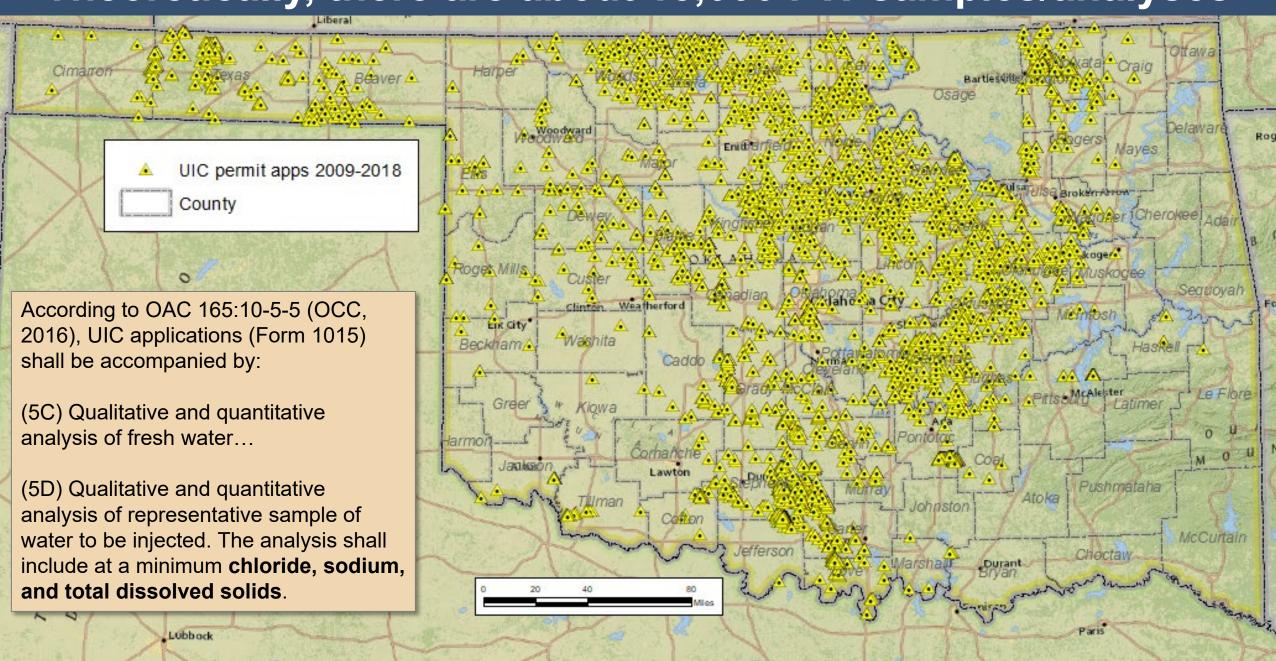
Deposit	Country	Туре	Average concentration (% Li)	In-situ resouro (Mt Li)
	Bolivia	Brine	0.0532	10.2
Atacama ^a	Chile	Brine	0.14	6.3
Kings Mountain Belt	United States	Pegmatite	0.68	5.9
Qaidam ^a	China	Brine	0.03	2.02
Kings Valley	United States	Sedimentary rock	0.27	2.0
Zabuyeª	China	Brine	0.068	1.53
Manono/Kitotolo	Congo	Pegmatite	0.58	1.145
Rincon	Argentina	Brine	0.033	1.118
Brawley	United States	Brine	=	1.0
Jadar Valley	Serbia	Sedimentary rock	0.0087	0.99
Hombre Muerto ^a	Argentina	Brine	0.052	0.8
Smackover	United States	Brine	0.0146	0.75
Gajika	China	Pegmatite	_	0.591
Greenbushes ^a	Australia	Pegmatite	1.59	0.56
Beaverhill	Canada	Brine	_	0.515
Yichun ^a	China	Pegmatite	_	0.325
Salton Sea	United States	Brine	0.02	0.316
Silver Peak*	United States	Brine	0.02	0.3
Kolmorzerskoe	Russia	Pegmatite	=	0.288
Maerking ^a	China	Pegmatite	_	0.225
Maricunga	Chile	Brine	0.092	0.22
Jiajika*	China	Pegmatite	0.59	0.204
Daoxian	China	Pegmatite	_	0.182
Dangxiongcuoª	China	Brine	0.04	0.181
Olaroz	Argentina	Brine	0.07	0.156
Other (producing)*	8 deposits in Brazil, Canada, China, Portugal	Pegmatite	_	0.147
Goltsovoe	Russia	Pegmatite	-	0.139
Polmostundrovskoe	Russia	Pegmatite	_	0.139
Ulug-Tanzek	Russia	Pegmatite	_	0.139
Urikskoe	Russia	Pegmatite	_	0.139
Koralpe	Austria	Pegmatite	_	0.139
Mibra	Brazil	Pegmatite	_	0.1
Bikita*	Zimbabwe	Pegmatite	1.4	0.0567 ^b
Dead Sea	Israel	Brine	0.001	_
Great Salt Lake	United States	Brine	0.004	_
Searles Lake	United States	Brine	0.005	_
Total				38.68

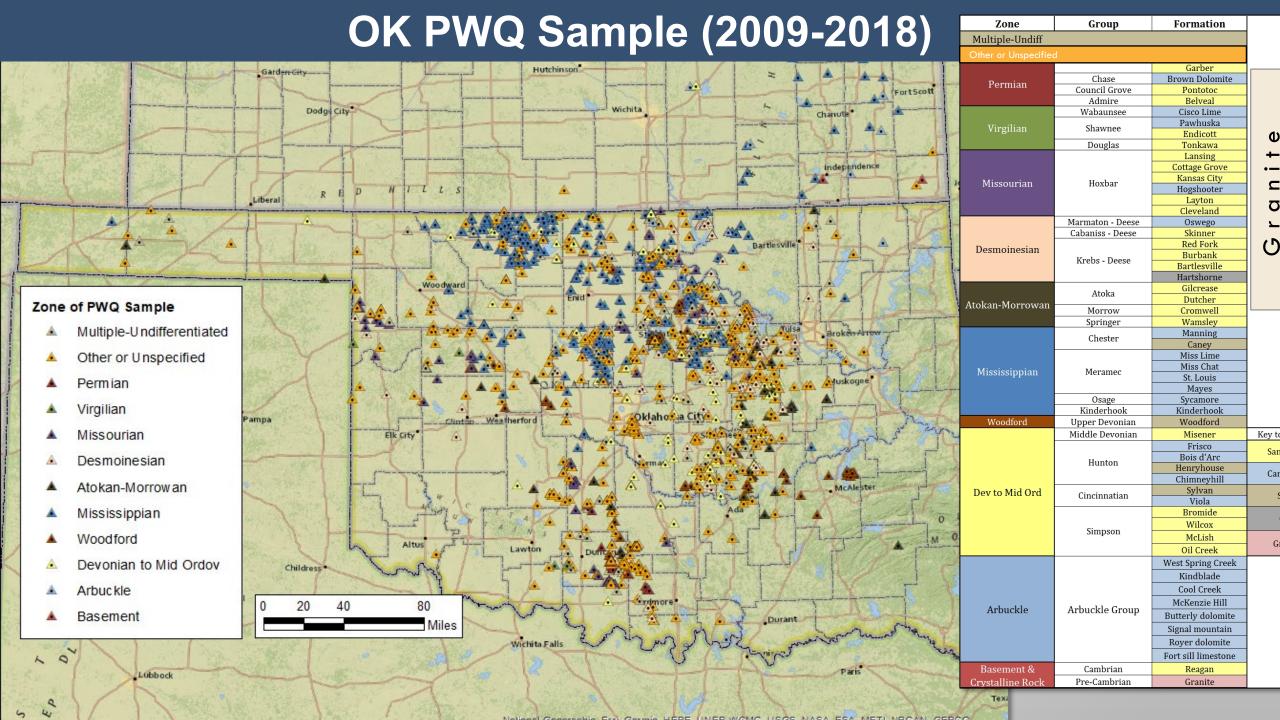
Note: Li = lithium; Mt = million tonnes.


Example CM: Lithium


 $^{^{}a}$ Producing. b We used the lowest estimate in the literature, although some estimates for Bikita were over 100,000 tonnes Li.

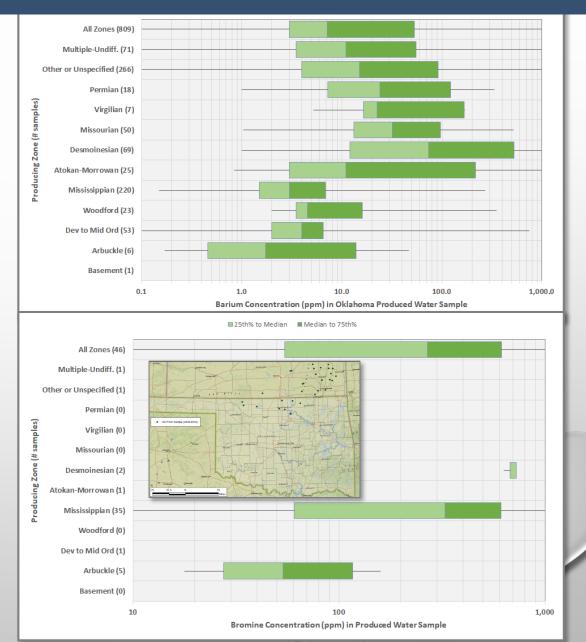
Top Prospects in Brine of Oklahoma & Arkansas

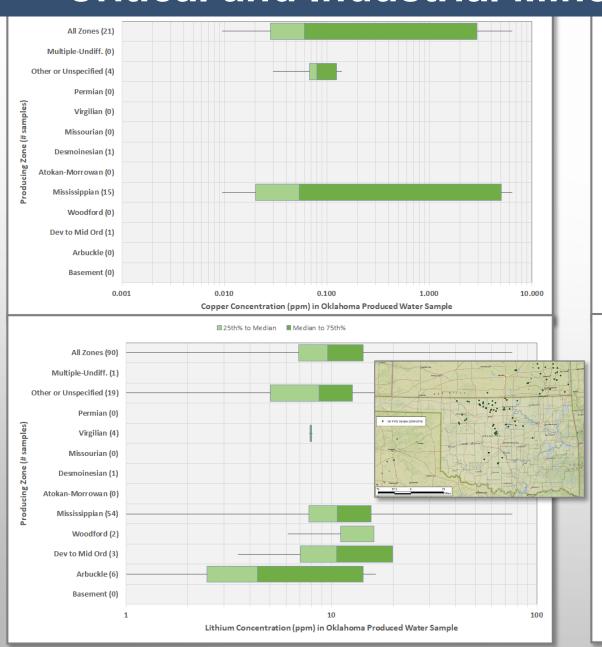



Zone	Group	Formation		
Multiple-Undiff				
Other or Unspecified	l l			
		Garber		
Permian	Chase	Brown Dolomite		
	Council Grove	Pontotoc		
	Admire	Belveal		
	Wabaunsee	Cisco Lime		
Virgilian	Shawnee	Pawhuska		
	p 1	Endicott	U	
	Douglas	Tonkawa		
		Lansing Cottage Grove		
		Kansas City	·- S	
Missourian	Hoxbar	Hogshooter	□ □	
		Layton	_ o	
		Cleveland	0	
	Marmaton - Deese	Oswego	ranit Wash	
	Cabaniss - Deese	Skinner	/	
Desmoinesian		Red Fork	()	
Desinomesian	Krebs - Deese	Burbank		
	KLED2 - DEC26	Bartlesville		
		Hartshorne		
Atokan-Morrowan	Atoka	Gilcrease		
		Dutcher		
	Morrow	Cromwell		
	Springer	Wamsley		
	Chester	Manning		
		Caney		
		Miss Lime		
Mississippian	Meramec	Miss Chat St. Louis		
		Mayes		
	Osage	Sycamore		
	Kinderhook	Kinderhook		
Woodford	Upper Devonian	Woodford		
TT O O CATOT CA	Middle Devonian	Misener	Key to Symbols	
	Findare Devenian	Frisco		
		Bois d'Arc	Sandstone	
	Hunton	Henryhouse	Carbonate	
		Chimneyhill		
Dev to Mid Ord	Cincinnatian	Sylvan		
	Cincinnatian	Viola	Shale	
		Bromide	Coal	
	Simpson	Wilcox	Coar	
	Simpson	McLish	Granite	
		Oil Creek		
		West Spring Creek		
Arbuckle		Kindblade		
		Cool Creek		
		McKenzie Hill		
	Arbuckle Group			
	•	Butterly dolomite		
		Signal mountain		
		Royer dolomite		
		Fort sill limestone		
Basement &	Cambrian	Reagan		
Crystalline Rock	Pre-Cambrian	Granite		
J. J. J. Statistic Rock				

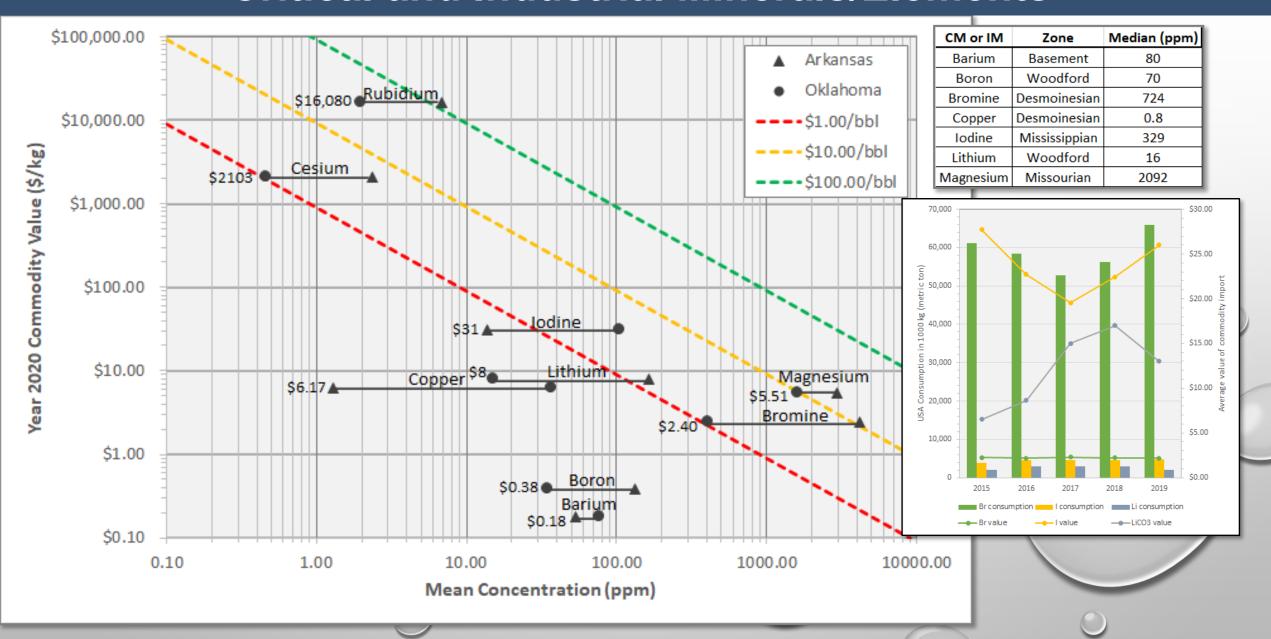
Produced H₂O by Zone and County



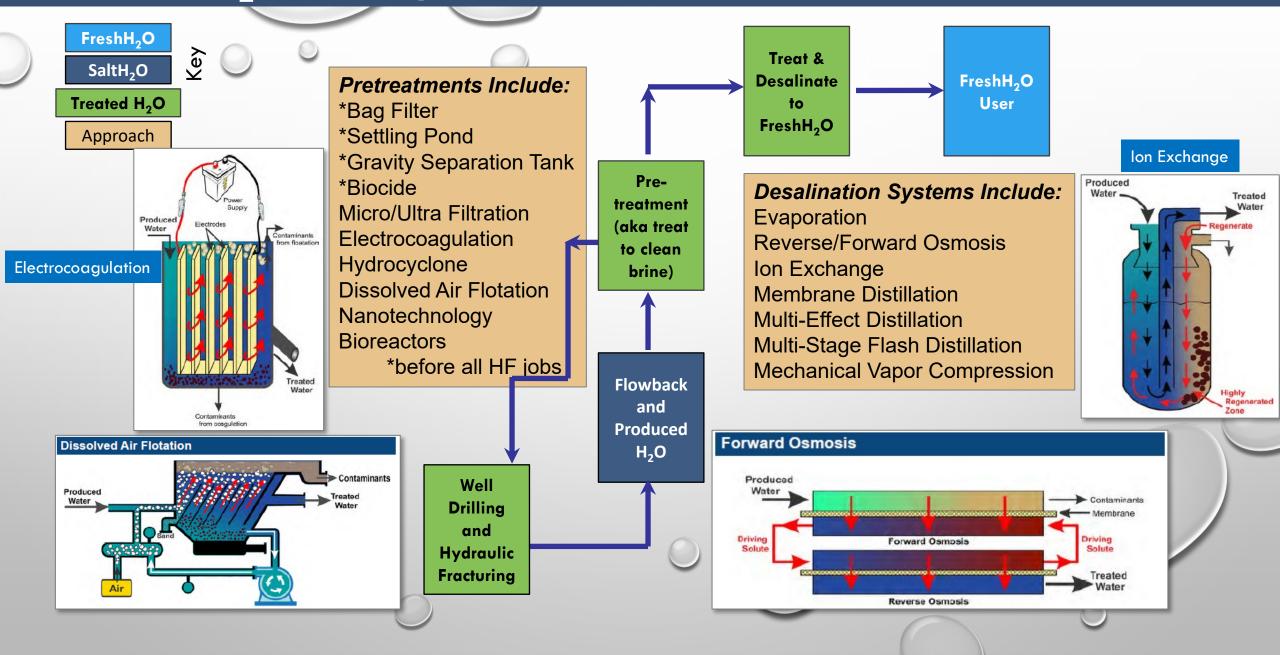

Theoretically, there are about 15,000 PW samples/analyses

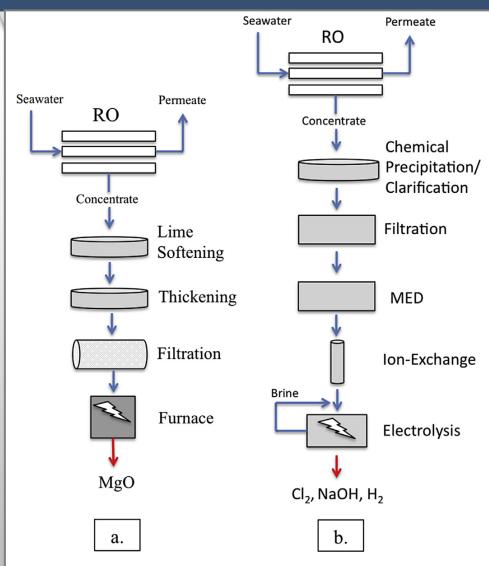


Critical and Industrial Minerals/Elements in OK dbase



Critical and Industrial Minerals/Elements in OK dbase

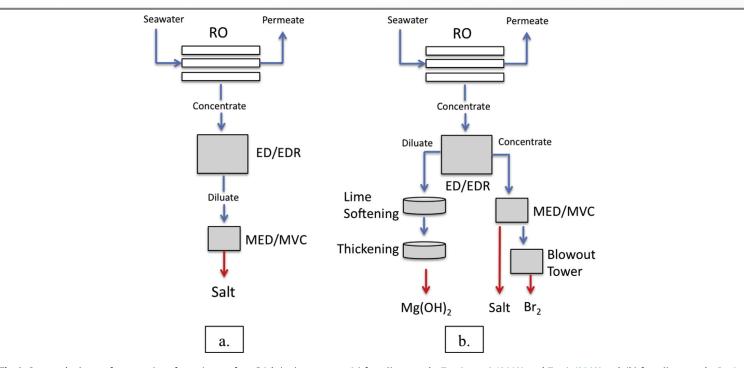
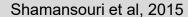
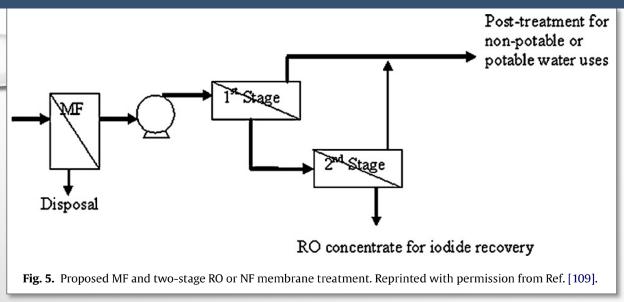
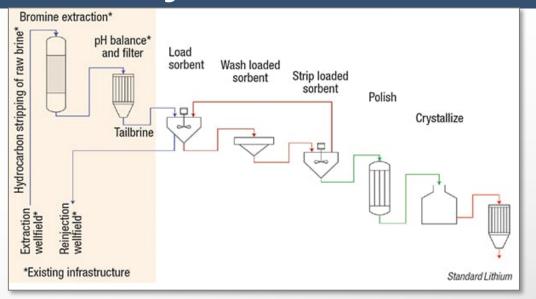


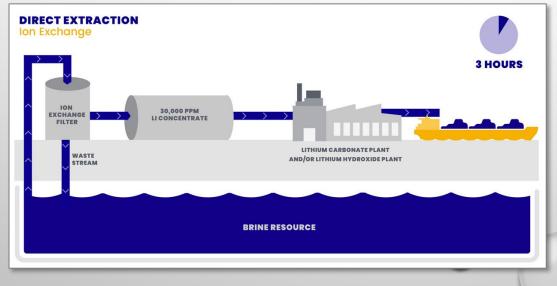

Critical and Industrial Minerals/Elements

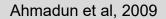
O&G H₂O Management Flowchart: Water Reclamation

Treatment and Concentrated Brine

Fig. 2. Proposed schemes for extraction of constituents from RO brine/concentrate. (a) the common production method for producing magnesia (MgO) from seawater. (b) process based on literature by Melian-Martel et al. (2011).


Fig. 3. Proposed schemes for extraction of constituents from RO brine/concentrate. (a) from literature by Tanaka et al. (2003), and Turek (2003) and, (b) from literature by Davis (2006).



Resource Recovery

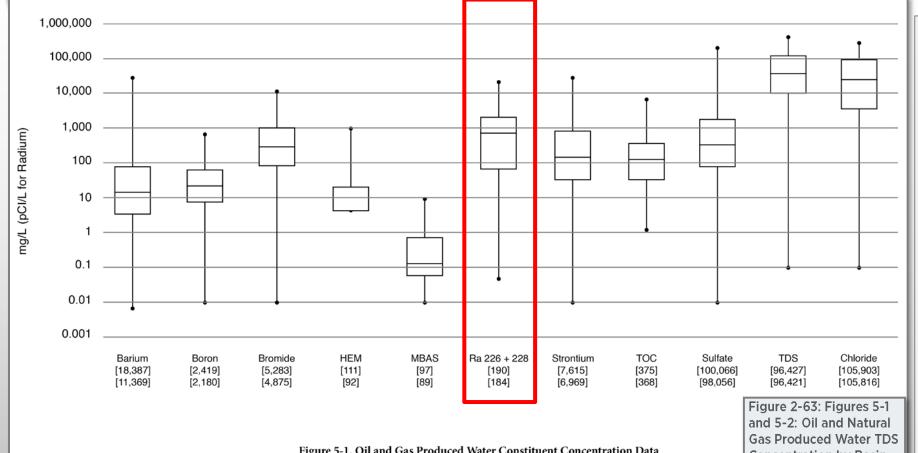


Figure 5-1. Oil and Gas Produced Water Constituent Concentration Data (USGS National Produced Waters Geochemical Database, V2.2)

GWPC, 2020

Concentration by Basin

Source: USGS National Produced Waters Geochemical Database, V2.2

* USEPA, Detailed Study of the Centralized Waste Treatment Point Source Category for Facilities Managing Oil and Gas Extraction Wastes, EPA-821-R-18-004, May 2018, 262 pp., https://www.epa.gov/sites/ production/files/2018-05/documents/cwt-study may-2018.pdf

What are the median and 75th% concentrations for total Radium?

How do they compare to **MCL**

Because of the human health risks associated with the ingestion of Ra and inhalation of its daughter products (e.g., Rn), total Ra activity (226Ra + 228Ra) for public water supplies is not to exceed 5 pCi/L or ~11.1 disintegrations per minute per kilogram (dpm/kg).

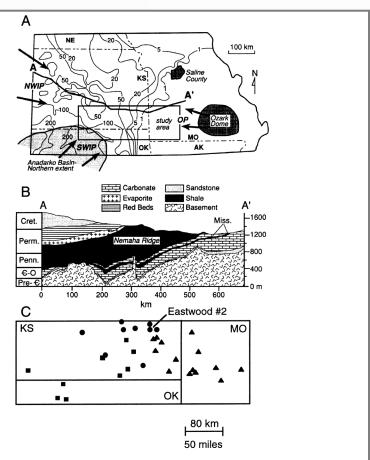


Fig. 1. (A) Map showing location of study area in southwestern Missouri, southeastern Kansas, and northeastern Oklahoma (also shown is area in Saline County, Missouri, from which four samples are included in this study). Contours of regional distribution of ground water salinities in Cambrian-Ordovician rocks expressed in g 1⁻¹ of total dissolved solids. Prevailing flow directions of regional ground water in the northern western interior plains aquifer (NWIP), the southern western interior plains aquifer (SWIP), and the Ozark Plateaus aquifer (OP) shown by arrows. (B) West-east geologic cross-section showing schematic stratigraphy. (C) Enlargement of study area from Fig. 1(A) showing fluid sampling localities [symbols based on geographic-geochemical correlations of Musgrove and Banner (1993) as summarized in Table 1: triangles, group 1; circles, group 2; squares, group 3]. This figure is adapted from Musgrove and Banner (1993).

Sample	Date ^b	Group/type ^c	TDS (mg l ⁻¹)	Ca (mg l ⁻¹)	Sr (mg l ⁻¹)	Ba (mg l ⁻¹)	(²²⁶ Ra) dpm kg ⁻¹	(²²⁸ Ra/ ²²⁶ R
Southwestern Missouri								
Lamar	910623	1/MWS	294	32	0.16	0.29	4.0 ± 0.4	0.22 ± 0.05
Webb City #7	891104	1/MWS	372	59	0.09	0.14	2.4 ± 0.4	0.18 ± 0.1
Fairview #11	910621	1/MWS	286	38	0.09	0.14	2.2 + 0.4	0.26 ± 0.0
Miller #2	910622	1/MWS	278	36	0.04	0.01	0.8 ± 0.4	0.12 ± 0.13
Carthage #7	910622	1/MWS	568	101	0.22	0.11	4.3 + 0.4	0.74 ± 0.04
Carthage #11	910622	1/MWS	303	39	0.09	0.14	2.4 ± 0.4	0.32 ± 0.0
Aurora #4	910625	1/MWS	328	42	0.06	0.04	0.7 ± 0.4	0.43 ± 0.23
Nevada ♯4	910713	1/MWS	1320	75	2.03	0.08	11.9 ± 0.4	0.20 ± 0.03
Saline County, Missouri								
Sweet Spring	891105	1/AW	4680	333	7.89	0.04	69 ± 2	0.12 ± 0.03
McCallister	891105	1/NS	6300	306	9.81	0.50	94 ± 2	0.20 ± 0.0
Blue Lick	891105	2/NS	25,500	1330	40.4	0.04	380 ± 10 $397 + 13^d$	0.31 ± 0.0
Boone's Lick	891105	2/AW	21,600	1120	36.4	0.03	322 ± 8 315 ± 8^{d}	0.095 ± 0.00
Southeastern Kansas								
Pittsburg #10	910620	1/MWS	609	63	0.88	0.18	5.8 + 0.4	0.24 ± 0.03
Columbus #4	910626	1/MWS	666	48	1.37	0.12	10.5 ± 0.4	0.19 ± 0.03
Elmer	910627	1/OWS	2870	19	1.10	0.15	11.5 ± 0.4	0.27 ± 0.0
Campbell #2	910621	1/OWS	6720	110	5.14	0.71	59.4 ± 0.4	0.27 ± 0.0
Nelson	891104	1/OWS	3470	77	0.03	0.16	40.2 ± 1.0	0.26 ± 0.0
McCoy	910628	1/OWS	14,100	208	15.3	1.26	186 ± 1	0.32 ± 0.0
Althouse #1	910706	2/OP	22,200	1140	43.7	0.08	1060 ± 20	0.08 ± 0.03
Koenig #2A	910707	2/OP	26,300	794	54.7	3.25	258 ± 11	0.62 ± 0.10
Perkins #2	910704	2/OP	63,200	3400	86.8	0.18	1520 ± 20	0.14 ± 0.03
Fuller #15	910623	2/OP	45,300	1635	103	4.28	783 ± 14	0.22 ± 0.03
Kimbell #1	891103	2/OP	42,900	1721	83.0	2.17	1310 ± 30 1303 + 39 ^d	0.11 ± 0.0
Eastwood #2	891102	2/OWS	18,400	444	30.4	2.05	208 ± 5 $202 + 5$	0.80 ± 0.0
Minckley A	910627	2/OWS	13,300	262	15.3	2.93	179 + 1	0.20 ± 0.0
Love 1W	910703	2/OWS	9400	173	9.41	0.65	173 ± 1 $113 + 1$	0.20 ± 0.0 0.17 ± 0.0
Perry	910704	2/OWS	25,300	937	27.5	3.02	331 ± 12	0.21 ± 0.0
Hyde #18	910704	3/OP	137,000	8132	1050	1.76	728 + 14	0.12 ± 0.0
Short	910711	3/OP	114,000	5400	197	0.88	431 ± 9	0.33 ± 0.0
Clubine	910629	3/OWS	68,800	2530	124	43.5	1743 ± 4	0.105 ± 0.00
Sheik	910701	3/GP	79,200	2940	163	32.0	1260 + 20	0.14 ± 0.03
Peck	910701	3/OP	62,300	2280	136	45.3	590 ± 13	1.48 ± 0.06
Louk 1W	910703	3/OWS	72,900	2800	137	3.31	4190 ± 30	0.096 ± 0.00
Northern Oklahoma								
Jenkins ♯l	910709	3/OP	249,000	25,900	1510	6.04	2150 ± 20	0.22 ± 0.0
E. McCullough	910710	3/OP	229,000	16,100	813	35.0	474 ± 13	1.14 ± 0.06
Shoffner #1	910710	3/OP	138,000	8850	283	2.16	$\frac{-}{7660 \pm 50}$	0.057 ± 0.00

^a Data for TDS, Ca, Sr, and Ba concentrations for southwestern MO, southeastern KS, and northern OK samples from Musgrove (1993), and for central Missouri samples from Banner et al. (1989).

Sturchio, 2001

b Date format is yymmdd.

^c Groups 1,2 and 3 defined in Table 1; fluid sources: MWS=municipal water supply; OWS=oilfie duction well; GP=gas production well; AW=artesian well; NS=natural spring.

d Replicate analysis by Rn emanation method (Lucas, 1977).

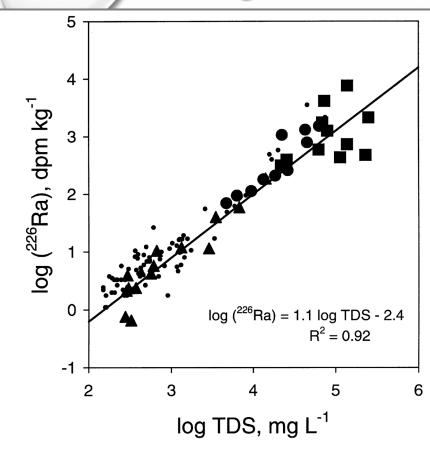
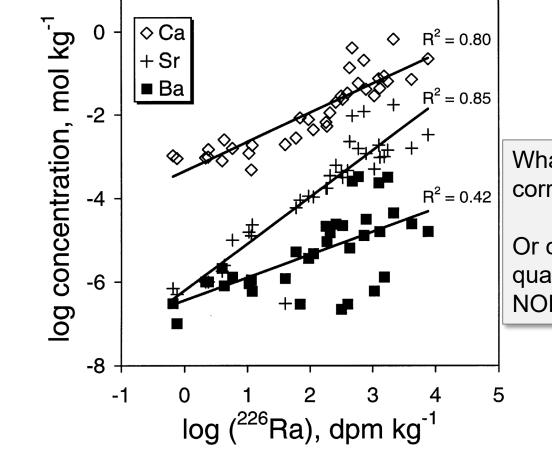
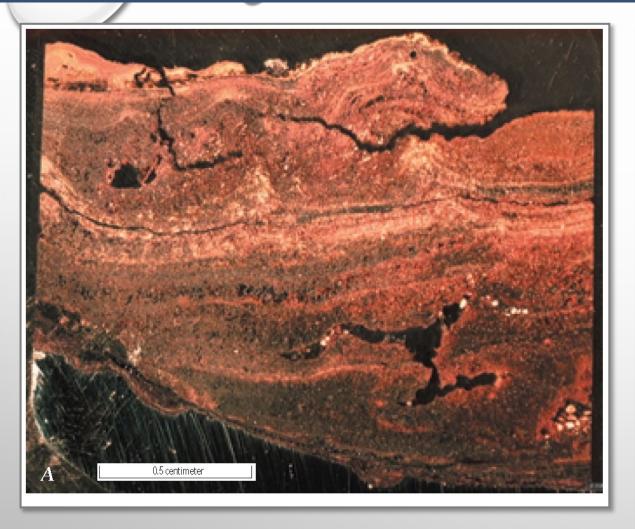
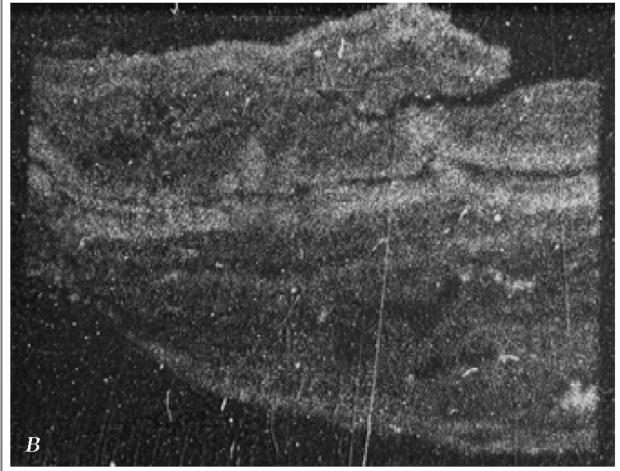


Fig. 2. Log (226 Ra) (dpm kg $^{-1}$) vs salinity (log TDS in mg l $^{-1}$) for ground water samples. Solid line shows positive correlation. Symbols represent ground water groups as in Fig. 1(C). Also shown (small filled circles), but not used to define the correlation line, are data from Macfarlane and Hathaway (1987).


Fig. 3. Log Ca, Sr, and Ba (molar) vs log (²²⁶Ra) (dpm kg⁻¹) for ground water samples, illustrating positive correlation among all elements.

What has the strongest correlation with ²²⁶Ra?

Or could be used to qualitatively assess NORM?

Sturchio, 2001

Figure 2. Radioactive scale deposits inside oil-field pipe (*A*) and the distribution of alpha-particle-emitting radium and radium decay products in the same sample (*B*). Brighter regions on the alpha emission image indicate areas of scale with higher concentrations of radioactive elements.

USGS, 1999

Summary

- Numerous Critical and Industrial Minerals/Elements (CM/IM) are present in produced water or brine at concentrations with potential for resource recovery
- Data collection, compilation, and reporting on PW quality would help for development of domestic "recoverable elements"
- Research on the why origin and enrichment of CM/IM in brine is needed

Pairing produced water treatment with resource recovery:

- CM/IM are already concentrated by treatment processes
- NORM are also concentrated in brine, scale deposits, and solid waste so must be carefully managed for health and safety